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Abstract The flow of a thin liquid film down a flexible inclined wall is examined. Two configurations are
studied: constant flux (CF) and constant volume (CV). The former configuration involves constant feeding
of the film from an infinite reservoir of liquid. The latter involves the spreading of a drop of constant
volume down the wall. Lubrication theory is used to derive a pair of coupled two-dimensional nonlinear
evolution equations for the film thickness and wall deflection. The contact-line singularity is relieved by
assuming that the underlying wall is pre-wetted with a precursor layer of uniform thickness. Solution of the
one-dimensional evolution equations demonstrates the existence of travelling-wave solutions in the CF
case and self-similar solutions in the CV case. The effect of varying the wall tension and damping coefficient
on the structure of these solutions is elucidated. The linear stability of the flow to transverse perturbations
is also examined in the CF case only. The results indicate that the flow, which is already unstable in the
rigid-wall limit, is further destabilized as a result of the coupling between the fluid and underlying flexible
wall.

Keywords Thin film · Flexible · Lubrication · Stability

1 Introduction

The spreading of thin liquid films on solid substrates has been well studied in the literature due to its
importance to numerous industrial and daily-life settings [1–5]. These films are driven to spread either by
body (e.g., gravity) or surface (e.g., Marangoni) forces. A system which has received particular attention
is that of gravity-driven flow of a thin film down an inclined plane, due to its applicability in coating-flow
technology. Numerous experimental and modeling studies have demonstrated that this flow is susceptible
to fingering instabilities. During the course of the flow, the film develops a thick capillary ridge near the
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contact-line region which becomes linearly unstable to transverse perturbations of intermediate wave-
numbers. These perturbations grow to give rise to fingers in the nonlinear regime. The mechanism for the
instability has been shown to be due to the applied body force (whether gravitational or centrifugal in
nature) [6], which causes thicker regions of the ridge to travel faster than relatively thin regions. Streamwise
capillarity provides the high wave number cut-off for the instability.

In contrast to flow down a rigid inclined plane, the problem of flow down a flexible inclined plane has
not, to our knowledge, received attention in the literature. As flow down a rigid incline is unstable, it is of
interest to determine ways in which such a flow can be stabilized. One potential way to do this is to make
the incline flexible. The flowing fluid will exert forces on the flexible incline, which may then deform. This
deformation will affect the fluid flow, and possibly its stability to various disturbances. Similar elastohy-
drodynamic problems arise in the use of flexible boundaries to delay the transition to turbulence [7], the
modeling of airflow in pulmonary airways [8] and hemodynamics in the heart [9], the reduction of defects
in coating process via the use of rubber-covered rolls [10], and instabilities near polymer interfaces [11].
Recently, Matar and Kumar [12] examined the rupture of a surfactant-covered thin film on a flexible wall
and found that the properties of the substrate (tension and damping, for instance) can have a significant
effect on the rupture dynamics. From a practical point of view, studying the flow down a flexible incline
may be relevant to coating processes in which fluids flow down inclined planes or coat flexible substrates.

As a model system in the present work, we consider the dynamics and stability of a thin liquid film
flowing down a flexible wall. We use lubrication theory to derive a pair of coupled evolution equations
for the wall deflection and film height. The flow in the absence of disturbances (base state) is investigated
for different values of the damping coefficient and wall tension. Two different flow configurations are
examined: constant flux and constant volume. The first corresponds to the case in which a constant flux of
liquid is provided at the flow origin, while the second involves the spreading of a drop of finite volume.
The existence of travelling-wave solutions in the former case is demonstrated and the effect of wall tension
and damping on the linear stability of the system in this case is then examined. Our results indicate that
decreasing the relative significance of wall damping and/or wall tension is destabilizing, leading to an
increase in the maximal growth rates and band of unstable wavenumbers. In the limit of large wall tensions,
the situation of flow over a rigid wall is recovered.

2 Formulation

The liquid film is assumed to be incompressible, Newtonian and uncontaminated with characteristic thick-
ness H, length L, viscosityμ, density ρ and surface tension σ . The flexible wall, which is inclined at an angle
θ to the horizontal, has thickness H0, density ρw, tension T and damping coefficient γ . The contact-line
singularity is relieved by using a precursor film of thickness Hb. We use a rectangular coordinate system
(x, y, z) to describe the flow and a velocity field u = (u, v, w), where u, v and w correspond to the stream-
wise, transverse and vertical components of the velocity, respectively. The instantaneous location of the
film height is at z = h(x, y, t), while that of the underlying flexible wall is at z = −η(x, y, t). The dynamics
of the surrounding air, which has pressure pg, are neglected in the present work.

The film dynamics are governed by mass and momentum conservation equations in −η ≤ z ≤ h:

∇ · u = 0, ρ
Du
Dt

= −∇p + μ∇2u + ρg, (1)

in which p and g denote the pressure and the gravity vector, respectively. The following boundary conditions
apply at z = h(x, y, t):

n · T · n = σκ , n · T · t = 0, ht + ushx + vshy = ws, (2)

where κ = ∇s · n, ∇s = (I − nn) · ∇, T = −pI + μ(∇u + ∇uT) and the subscript ‘s’ denotes surface
quantities; unless stated otherwise, subscripts denote partial differentiation. These conditions correspond
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to the continuity of shear and normal stress and the kinematic boundary condition, respectively. Here, T is
the total stress tensor in the liquid film, κ is the curvature, n = (−hx, −hy, 1)/(1+h2

x +h2
y)

1/2 is the outward
pointing normal from the air–liquid interface, t is the tangent to the air–liquid interface and I is the identity
tensor.

The conditions at z = −η are:

u = v = 0, ηt = −ww, (3)

which correspond to the no-slip and no-penetration conditions, and the kinematic boundary condition,
respectively; the subscript ‘w’ designates quantities evaluated at the flexible wall.

For the wall, we have the following governing equation:(
ρwHoγ

�w

)
ηt −

(
T

�3
w

) (
ηxx + ηyy

) = −nw · T · nw, (4)

in which nw = (−ηx, −ηy, 1)/�w is the unit normal to the wall–liquid interface where�w ≡ (1+η2
x +η2

y)
1/2.

This model is similar to that used by Halpern and Grotberg [13, 14] in their work on liquid-film dynamics
inside flexible tubes, and by Matar and Kumar [12] in their study of thin-film rupture on flexible walls.
The wall is assumed to be infinitely long, isotropic, impermeable and sufficiently thin so that wall tension
(assumed to be the same in the longitudinal and transverse directions) acts uniformly across the wall
thickness. Bending stresses are neglected under these conditions [15, 16].

The above equations are rendered dimensionless by scaling x and y on L, z, h and η on H, u and v
on U, w on εU, t on L/U and p on ρgL where g = |g|. Here, U = ρgH2/μ is a characteristic velocity,
L = (σH/ρg)1/3 is the characteristic length and ε ≡ H/L. Assuming that ε � 1, we can employ lubrication
theory, which to leading order gives:

ht = −ηt + 1
3

[
(h + η)3(px − sin θ)

]
x
+ 1

3

[
(h + η)3py

]
y

, (5)

ε2Bηt − T
(
ηxx + ηyy

) = − (
hxx + hyy

)
, (6)

where p = −(hxx + hyy). Here, B ≡ ρwHoHγ /μ and T ≡ T/σ , which are dimensionless measures of wall
damping and tension, respectively. In what follows, we shall set B = B/ε2 (except where we analyze the
early time dynamics) but explore a wide range of B values. Note that as η → 0 (either because T → ∞
and/or B → ∞), Equation 5 reduces to that governing the two-dimensional dynamics of a thin film flowing
down a rigid incline.

Solutions of Eqs. 5 and 6 will be obtained for two distinct situations: the case of a constant volume
(CV) of fluid and that of constant flux (CF). The former case represents a situation in which a drop of
liquid of finite volume spreads along the flexible incline. The latter represents flow of a thin sheet of liquid
down the incline which emerges from a reservoir of liquid. In the CV case, numerical solutions of the
one-dimensional (1-D) version of Eqs. 5 and 6 are sought starting from:

h(x, 0) = exp(−(x − 20)2)+ b, η(x, 0) = 0, (7)

which correspond to a liquid drop deposited on a substrate with zero deflection, where b is the dimensionless
precursor-film thickness. The boundary conditions are:

hx(0, t) = hxxx(0, t) = 0, η(0, t) = 0,

h(L, t) = b, hx(L, t) = 0, η(L, t) = 0, (8)

where L is the length of the computational domain. In the CF case, Eqs. 5 and 6 admit travelling-wave
solutions of the form:

h(x, t) = H(ξ), η(x, t) = G(ξ), (9)
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where ξ = x − ct in which c is the travelling-wave velocity. The coupled system of ordinary differential
equations governing H(ξ) and G(ξ) is then given by[

c(G + H)− 1
3

[
(H + G)3

(
Hξξξ + sin θ

)]]
ξ

= 0, (10)

[
T Gξ − Hξ + cBG

]
ξ

= 0. (11)

An expression for c is obtained via integration of Eq. 10 and application of the conditions H → b and
Hξξξ → 0 as ξ → ∞, and H → 1 and Hξξξ → 0 as ξ → −∞:

c = (1 − b3)

3(1 − b)
sin θ , (12)

which is dependent on b and θ only and independent of both T and B. This expression for c is identical to
that for flow over a rigid incline [6, 17].

Rather than solve the ordinary differential equations given by Eqs. 10 and 11, travelling-wave solu-
tions are constructed by assuming that h(x, t) = H(ξ , τ), η(x, t) = G(ξ , τ), τ = t and seeking steady-state
solutions of Eqs. 10 and 11 starting from the following initial conditions:

H(ξ , 0) = 0.5(1 − b)
(
1 − tanh

(
10

[
ξ − 10

])) + b, η(ξ , 0) = 0, (13)

and with the following boundary conditions:

H(0, τ) = 1, Hξ (0, τ) = 0, G(0, τ) = 0,

H(L, τ) = b, Hξ (L, τ) = 0, G(L, τ) = 0. (14)

The initial condition for the film thickness corresponds to a film whose thickness changes from 1 to b over
10 dimensionless units. Note that the use of other forms for the initial conditions in both the CV and CF
cases gives rise to quantitative, rather than qualitative variations in the results.

The numerical procedure used to carry out the computations is PDECOL, in which finite elements are
used to discretize the spatial derivatives; Gear’s method is employed in order to advance the solution in
time. This routine has been previously used to solve thin-film equations in related problems [18, 19] where
the film exhibits spatially rapidly varying solutions in the form of advancing fronts and pulses, and thickened
capillary ridges. Numerical solutions for the CV case were obtained over a computational domain of length
up to 200 dimensionless units using up to 3000 grid points; convergence was achieved upon refinement of
the spatial mesh size. These solutions were obtained for 0.01 ≤ T ≤ 100 and 10−6 ≤ B ≤ 100. In the CF
case, travelling-wave solutions were obtained for 0.01 ≤ T ≤ 10 and 10−6 ≤ B ≤ 100 over a computational
domain of length 20 dimensionless units. In this case, up to 600 grid points were used with convergence
again being achieved upon mesh refinement. For both configurations, θ and ε were fixed at π/2 and 0.01,
respectively. The parameter b was fixed at 0.1 and 0.04 for the CF and CV cases, respectively.

3 Base flow

3.1 Constant flux

We begin by examining the solutions obtained for the case of weak tension and damping at early times.
Setting T = εT̂ and t = ε2 t̂ with B = O(1) Eqs. 5 and 6 can be expressed as:

Bηt̂ = −hxx + O(ε2), ht̂ = −ηt̂ + O(ε2). (15)

Thus, h obeys a diffusion equation:

ht̂ = B−1hxx, (16)
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with B−1 as the effective diffusion coefficient. Equation 16 admits the following analytical solution:

h(x, t̂) = 1
2

[
(1 + b)− (1 − b)erf

(
(x − x0)

2
√

t̂/B

)]
, (17)

which satisfies the boundary conditions h = 1 at x = 0 and h → b as x → ∞. An early-time solution for η
can also be obtained from Eq. 15, which takes into account the initial conditions given by (13):

η(x, t̂) = 1
2
(1 − b) (1 − tanh (10 [x − x0]))+ b − 1

2

[
(1 + b)− (1 − b)erf

(
x

2
√

t̂/B

)]
. (18)

Figure 1a, b depicts a comparison between numerically generated solutions of h and η at early times, start-
ing from Eq. 13, with analytical solutions described by Eqs. 17 and 18. Here, T̂ = 0.01, B = 1, ε = 10−2 and
x0 = 10, with t = 0–10−4 (or t̂ = 0 to t̂ = 1). Inspection of Fig. 1a, b reveals excellent agreement between
the analytical solutions and the numerical predictions. Also, as shown in Fig. 1a, b, the initially localized h
distribution appears to relax ‘diffusively’ on a fast time-scale, while η, which is zero-valued initially, rapidly
achieves magnitudes which are of order one. This reflects the rapid deformation of a weakly tensile wall in
response to the deposition of a localized film upon it.

Next, we examine the behavior of h and η at intermediate times. As shown in Fig. 1c, d, which depicts
the solutions for h and η up to t = 0.01, the film thickness assumes an essentially linear profile that satisfies
h = 1 and h = b at both ends of the computational domain. Close inspection of Fig. 1c, however, reveals the
existence of a region of rapid variation near x = x0 = 10, an ‘inner’ region in which the solution upstream
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Fig. 1 Early-time evolution of the film thickness, (a), and substrate deflection, (b), for T = 0.01 and B = 1 with t = 0 – 10−4

in 10 equal time steps. Both numerically generated solutions (solid lines), starting from (13) (dotted lines), and analytical
solutions at t = 10−4 (dot-dashed lines), given by Eqs. 17 and 18, are shown; (c) and (d) show the evolution at intermediate
times with t = 0 – t = 10−2 in 10 equal time steps; (e) and (f) show the evolution for t = 0 – t = 10 in 10 equal time steps. The
arrows indicate the direction of increasing time
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of x0 adjusts onto that downstream, i.e., in the ‘outer’ regions. The profile for η, shown in Fig. 1d, also
comprises two essentially linear portions upstream and downstream of x = x0 = 10, which satisfy η = 0
at x = (0, L). In the vicinity of x = x0, a region of rapid adjustment in η is found which coincides with the
spatial location of that found in Fig. 1c. The amplitude of these regions in h (η) increases with increasing
(decreasing) T .

We now examine the evolution at later times. In Fig. 1e, f, we plot the spatial development of
h − (1 − (1 − b)[x/L]) and η for t = 0 up to t = 10; here, we have subtracted the linear part of the
film from the solution for h in order to present a magnified view of the capillary ridge, which has a small
amplitude for relatively small T . The film thickness and deflection profiles appear to develop thickened
ridges in the adjustment region, which travel downstream of the flow origin and undergo only very minor
changes in shape. At this stage, it is possible to infer from Fig. 1e, f that the solutions for h and η have
become travelling-waves that move in the direction of increasing x with a constant speed, c. The emergence
of these travelling-wave solutions was anticipated in the previous section.

In Fig. 2a, b, we show the effect of varying the parameter T on the shapes of the travelling-wave solutions
with B = 10−4 (B = 1); these solutions are, of course, steady in a reference frame moving with the wave.
Also shown in Fig. 2a, b are the profiles associated with flow over a rigid wall, obtained by setting T → ∞.
Clearly, an increase in the value of the axial tension leads to an overall reduction in the amplitude of
the wall deflection and increase in that of the capillary ridge developed by the film thickness; the profiles
associated with T = 10 are very similar to those generated with T → ∞. In the case of weak tension,
pronounced ridges are exhibited by G reflecting the large deformations in the wall which accompany the
flow in this case.

This behavior, which is to be expected intuitively, can also be rationalized by examining Eqs. 5 and 6 in
the absence of wall damping, i.e., for B � 1. In this case, Eq. 6 reduces to:

ηxx = hxx/T , (19)

whence η = h/T + c1(t)x + c2(t), where c1 and c2 are constants of integration. Application of the boundary
conditions appropriate to the CF case yields the following expression for η:

η =
[
h + (1 − b)x/L − 1

]
T , (20)

which suggests that the amplitude of η decreases with increasing T (and vice versa).
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Fig. 2 The effect of T (with B = 10−4), (a) and (b), and B (with T = 1), (c) and (d), on H and G
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We next examine the effect of varying B on the structure of the travelling-wave solutions. As shown
in Fig. 2c, d, in which we vary B over seven orders of magnitude while keeping T = 1, decreasing B
(i.e., decreasing the relative significance of wall damping) results in smaller film capillary ridges and more
pronounced deformations in the underlying wall. In contrast, increasing B to large values yields profiles
that are very similar to those associated with flow over a rigid wall, which are also shown in Fig. 2c, d. Inter-
estingly, the profiles associated with B = 10 and T = 1 exhibit capillary ridges which are more pronounced
than those found in the rigid-wall case. A further increase in B for fixed T values, however, yields profiles
which are virtually identical to those associated with a rigid wall.

3.2 Constant volume

We begin this section by examining the flow profiles associated with the spreading of a drop of constant
volume down a rigid incline. In Fig. 3a, we plot the evolution of h and the temporal variation of the maxi-
mal value of h, hmax, and that of its spatial location, xmax, in panels (b) and (c), respectively. Inspection of
Fig. 3a reveals that the liquid drop has undergone significant deformation and spreads asymmetrically
under the action of gravity down the inclined plane. The drop develops a thickened capillary ridge at its
leading edge, which is very similar to that seen in Fig. 1e in the CF case. Inspection of Figs. 3b and c shows
that both hmax and xmax follow different scalings at different stages of the flow. Specifically, hmax ∼ t−1/7

and xmax ∼ t1/7, and hmax ∼ t−1/3 and xmax ∼ t1/3 [1, 20], at early and late times, respectively. We shall
return to this issue later in this section where arguments will be provided for the determination of these
scaling exponents.
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Fig. 3 Evolution of the drop thickness, (a), and the temporal evolution of the maximal thickness hmax, (b), and of the spatial
location of hmax, xmax, (c), for a rigid incline. The times shown in panels (a) and (b) correspond to t = 0–10000 in 20 equal
steps
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Fig. 4 Evolution of the drop thickness and substrate deflection. (a) and (b): T = 0.01 and B = 10−6; (c) and (d): T = 1 and
B = 10−6. The times shown correspond to t = 0–8100 in 20 equal steps

In Fig. 4a, b, we show the evolution of h and η for the case of weak tension and damping, characterized
by T = 0.01 and B = 10−6. Inspection of Fig. 4a reveals that the amplitude of the capillary ridge exhibited
by the deformed drop is small in this case. The η profiles also exhibit ‘ridges’ that coincide with those in
h, which, however, are of larger amplitudes as expected for small T and B. In fact, from Eq. 19, which is
valid for negligible wall damping, it can be shown that in the CV case

η = h − b
T , (21)

which suggests that the amplitude of η is inversely proportional to the magnitude of T . The profiles for
both h and η exhibit ‘outer’ and ‘inner’ regions, similar to those observed in the rigid-wall case [17, 20].
In the outer region, the flow is dominated by gravity, viscosity and wall characteristics, while in the inner
region, capillarity is also significant.

We next investigate the effect of varying T and B on the evolution of h and η. Our results suggest that
increasing T while keeping B constant leads to a reduction in the degree of deformation of the flexible
wall and an increase in the amplitude of the fluid capillary ridges. An increase in T also results in smoother
profiles in both h and η, characterized by wider, less pulse-like ridges, as shown in Fig. 4c, d. We have
also found that increasing B by two orders of magnitude from the value used in Fig. 4a, b while keeping
T = 0.01 constant appears to have a minor effect on the shapes of the profiles for h and η (not shown).
This is due to the fact that the wall damping term in Eq. 6 contains a ε2 pre-factor. Thus, in order for these
effects to be significant, B must be increased such that B ∼ O(1).

We have also investigated the effect of varying T and B on the scaling exponents at early and late times.
In Fig. 5a, b, we plot the temporal evolution of (η + h)max and that of its spatial location, xmax, for the
same parameters as those used to generate Fig. 4a, b. Clearly, (η + h)max and xmax follow similar scalings
to those observed in Fig. 3 for the case of a rigid wall at both early and late times. It therefore appears
that the scaling exponents—which in the rigid-wall case (as will be shown below) are solely determined by
balancing gravity, capillarity and viscous retardation—persist despite the presence of a highly compliant
wall. In fact, increasing T (and B, not shown) also appears to have no discernible effect on these exponents
(see Fig. 5c, d).

In order to explain the scaling behavior exhibited by h and η, we seek self-similar solutions of Eqs. 5
and 6 of the following form:

η(x, t) = G(ξ)tβ , h(x, t) = H(ξ)tβ , ξ = xt−α , (22)
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Fig. 5 Temporal evolution of the maximal values of the drop thickness and surface deflection, (η + h)max, and of the spatial
location of (η + h)max and xmax. (a) and (b): T = 0.01 and B = 10−6; (c) and (d): T = 1 and B = 10−6. The remaining
parameter values are the same as in Fig. 4

where we have implicitly assumed that η and h follow the same scalings in time. Substitution of these
rescalings into Eqs. 5 and 6 yields:

B
(
βG − αξGξ

) = t1−2α (
T Gξξ − Hξξ

)
, (23)

β (H + G)− αξ (H + G)ξ + t1+3β−4α

3

[
(H + G)3

(
Hξξξ + t3α−β sin θ

)]
ξ

= 0. (24)

In the CV case, the volume of the drop, V, is an invariant: V = tα+β ∫ ∞
0 Hdξ . Thus, in order to obtain

self-similar solutions, β = −α, where it is expected that α > 0.
At this stage, it is possible to derive values of the scaling exponents which are valid at early and late

times. One would expect intuitively that, at early times, a balance would exist between capillary and viscous
forces due to the large initial curvature of the drop, with gravitational acceleration playing only a minor
role. At later times, after which the drop had undergone considerable deformation, the dominant balance
would instead be between gravitational acceleration and viscous retardation. At early times, Hξξξ 	 t4α ,
so that Eq. 24 effectively reduces to:[
βξ (H + G)+ t1+3β−4α

3
(H + G)3 Hξξξ

]
ξ

= 0, (25)

suggesting that the early-time dynamics are dominated by capillarity rather than gravity. In this case, we
have:

α = 1
7

and β = −1
7

. (26)

Note that t1−2α is then t5/7. Thus, from Eq. 23, βG ≈ αξGξ at early times, which implies that G ≈ G0/ξ . From
boundedness considerations, G ≈ 0, which suggests that the dynamics are driven by the height evolution
equation at early times.

At relatively late times, the gravitational term dominates, Hξξξ � t4α , so Eq. 24 effectively becomes:[
βξ (H + G)+ t1+2β−α

3
(H + G)3 sin θ

]
ξ

= 0, (27)
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which may be re-expressed as:[
βξζ + t1+2β−α

3
ζ 3 sin θ

]
ξ

= 0, (28)

where ζ ≡ H + G, from which:

α = 1
3

and β = −1
3

. (29)

This suggests that in this regime, (η + h)max ∼ t−1/3, and due to mass conservation, xmax ∼ t1/3. In fact, an
expression for ζ valid in the ‘outer’ region, in which capillarity is negligible, can be obtained via solution
of the following equation:

βξζ +
(
ζ 3 − 1

)
3

sin θ = 0. (30)

This equation was obtained by integrating Eq. 28 and applying the boundary conditions ξ → 0, (H, G) →
(1, 0). Inspection of Figs. 3 and 4 reveals reasonably good agreement between the numerical predictions
and the scaling exponents given by Eq. 29; the agreement with the scalings given by (26) is not as good:
(η + h)max and xmax appear to vary weakly with time at early times. Note that the exponents in Eq. 29
are the same as those obtained previously [1, 20] for flow down a rigid inclined plane in the absence of
capillarity. We turn our attention now to the linear stability of the flow in the CF case.

4 Linear stability

We analyze the linear stability of the flow in the CF case by linearizing Eqs. 5 and 6 about the travelling-wave
solutions for H and G:

(h, η)(x, y, t) = (H, G)(ξ , t)+ (ψ ,φ)(ξ , t)eiky, (31)

where ψ and φ represent the amplitudes of the disturbances in the film thickness and wall deflection,
respectively, and k is the disturbance wavenumber. We have chosen to investigate the linear stability of the
CF rather than the CV case due to the existence of steady-state travelling-wave solutions in the former,
which are absent in the latter case. The linearized equations governing the dynamics of the perturbations
are then given by

Bφt = cφξ + T φξξ − ψξξ + k2 (ψ − T φ) , (32)

ψt = − φt + c
(
ψξ + φξ

) + 1
3

[
(H + G)3

(
−ψξξξ + k2ψξ

)
− 3 (H + G)2

(
Hξξξ + sin θ

)
(ψ + φ)

]
ξ

+ 1
3
(H + G)3 k2

(
ψξξ − k2ψ

)
. (33)

In the absence of wall deflection effects, i.e., in the limit T → ∞, the linear operators in Eqs. 32 and 33
are known to be non-normal [1]. Thus, transient amplification of applied disturbances is possible which,
at intermediate time-scales, may mask the behavior predicted by a standard eigenvalue analysis. In the
present paper, we solve Eqs. 5, 6, 32 and 33 as an initial-value problem starting from (13) for H and G and
the following initial condition for ψ and φ:

ψ(ξ , 0) = e
(−5(ξ−10)2

)
, φ(ξ , 0) = 0, (34)

which correspond to a perturbation applied at the leading edge of the initial front in the liquid film. Long
time solutions of Eqs. 6, 5, 32 and 33 are then obtained using PDECOL over computational domains of
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Fig. 6 The effect of varying T (with B = 10−4), (a), and B (with T = 1), (b), on the numerically generated dispersion curves

20 dimensionless units in length for 0.1 ≤ T ≤ 10 and 10−5 ≤ B ≤ 100; solutions were obtained for up to
t = 105. The parameters b, ε and θ were fixed at 0.1, 0.01 and π/2, respectively.

Measures of perturbation growth (or decay) are extracted from these long time solutions by using the
following relations:

ωi =lim t→∞
1
2t

log
Ei(t)

Ei(t = 0)
(i = h, η), (35)

where Eh and Eη correspond to perturbation ‘energies’ given by

Eh =
∫ ∞

0 ψ2dξ∫ ∞
0 H2dξ

, Eη =
∫ ∞

0 φ2dξ∫ ∞
0 G2dξ

. (36)

Thus, theωi correspond to the asymptotic growth rates, which can be computed using a standard eigenvalue
analysis with (ψ ,φ) ∼ exp(ωt). Using this approach we are therefore capable of capturing the dynamics at
both early and late times.

In Fig. 6a we show numerically generated dispersion curves which depict the dependence of ωh on
k for different values of T with B = 10−4. For every value of T shown, the curves exhibit bands of wave-
numbers which have positive values of ωh with clearly defined cut-off and most-dangerous ‘modes’. The
wavenumbers associated with these modes, are defined as kc and km, respectively, the latter occurring at
intermediate wavenumbers. This indicates that the system is linearly unstable to transverse perturbations
of wavenumber k, which grow exponentially provided 0 ≤ k ≤ kc. The fastest growing mode, characterized
by km, is the one expected to dominate the dynamics prior to the onset of nonlinearities.

From Fig. 6a it can be clearly seen that a decrease in T is destabilizing, giving rise to an increase in
the maximal growth rate, km and kc. The dispersion curve associated with T = 10 is very similar to that
generated for a rigid wall and we have ensured that this dispersion curve is identical to that previously
obtained by other researchers [1, 6, 17], except that our growth rates are one-third of those found in the
literature due to our choice of scaling for time. (We do not include the factor of 1/3 in our time scales.)
Interestingly, the results shown in Fig. 6 indicate that decreasing T exerts a stabilizing influence on the low
wavenumber disturbances while destabilizing those at relatively large k values.

Next, we examine the effect of varying B on the numerically generated dispersion curves with T = 1; this
is shown in Fig. 6b. Here, we note that the effect of B on the stability characteristics is non-monotonic. A
decrease in the relative significance of wall damping such that B ∼ 10−5 leads to a more unstable situation
relative to the rigid-incline case, as characterized by an increase in the maximal growth rates, km and kc. An
increase in B to B = 0.5 is found to increase the maximal growth and is therefore destabilizing, although
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Fig. 7 Comparison of ψ and φ associated with the most dangerous modes in Fig. 6

km and kc are left virtually unaltered. A further increase to B = 10 leads to even larger growth rates and
an increase in kc, while leaving km unaffected. If, however, B is increased to B = 100, then the resulting
dispersion curve is very similar to that associated with the rigid-wall case. The latter result is to be expected
since in the limit B → ∞, one expects to recover the equations describing flow down a rigid incline.

We have also investigated the effect of varying T and B on the shapes ofψ and φ with k = km. Figure 7a,
b shows that the disturbances having the largest growth rates (which are those associated with T = 0.1 and
k = 1.1 in this plot) are highly localized at the downward sloping part of the capillary ridge, immediately
upstream of the precursor thickness region. The location of the disturbances in relation to the base-state
profiles is identical to that in the rigid-wall case [1, 6, 17]. A similar examination of Fig. 7c, d, in which we
plot the eigenfunctions associated with km for different B and T = 1, reveals no marked differences in the
shapes of ψ and φ for B = 10−5 and B = 0.5. The profiles are more localized than those associated with
the rigid-wall case. Interestingly, the ψ and φ profiles for B = 10, which is the most unstable case as shown
in Fig. 6b, are not as localized. In fact, ψ in this case is very similar to that of the rigid-wall case. It is worth
recalling, however, that the base state thickness profiles for B = 10 (Fig. 2c), exhibit more pronounced
capillary ridges which may be more susceptible to transverse perturbations.

It is well known that, in the case of rigid walls, the flow is destabilized by the body force, which amplifies
transverse perturbations and leads to alternating thin and thick regions that eventually form fingers [6].
The so-called Rayleigh component of the capillary pressure also provides a destabilizing, albeit smaller,
contribution [6]. In order to gain insight into the roles of wall tension and damping in the instability, we
form the inner product of Eq. 32 with φ to obtain the following equation for Eφ = ∫ ∞

0 φ2dξ :

1
2

dEφ
dt

= c
2

dEφ
dξ

+ 1
B

[∫ ∞

0
φξψξdξ + k2

∫ ∞

0
ψφdξ − T

∫ ∞

0
φ2
ξdξ − k2T

∫ ∞

0
φ2dξ

]
, (37)

where the term proportional to c is due to streamwise flow in a reference frame moving with the travelling-
wave. Inspection of Eq. 37 allows the identification of terms which are stabilizing or destabilizing, leading
to dEφ/dt < 0 and dEφ/dt > 0, respectively.

The fourth and fifth terms on the right-hand-side of Eq. 37 that are proportional to T , which correspond
to contributions to the flow of wall tension in the streamwise and transverse directions, respectively, are
both stabilizing. Hence, decreasing the value of T is destabilizing. The second and third terms on the
right-hand side of Eq. 37, which represent capillary pressure distributions in the streamwise and transverse
directions, respectively, are potentially destabilizing provided ψφ > 0 and ψξφξ > 0. As shown in Fig. 7
and all the cases investigated in this work, ψ and φ are spatially coincident and of the same sign. In fact, in
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the limit B → 0, it can be shown that φ = ψ/T . Thus, we can conclude that, in addition to the destabilizing
effect of the body force, the flow is further destabilized by the coupling between the film and underlying
flexible wall which arises through the capillary pressure. This happens despite the fact that decreasing T
results in smaller capillary ridges in the film, which might be expected to lead to a more stable situation.

5 Conclusion

We have examined the flow of thin liquid films down a flexible inclined wall. Lubrication theory was used
in order to derive a coupled system of evolution equations for the film thickness and wall deflection; a
precursor-layer model was used to relieve the singularity at the contact line. The evolution equations are
parameterized by dimensionless measures of the wall tension and damping coefficient, T and B, respec-
tively, in addition to the angle of inclination from the horizontal, which was taken to be equal to π/2
throughout this work. Two flow configurations were studied: constant flux (CF), and constant volume
(CV). The linear stability of the flow in the former case to transverse perturbations was also studied.

In the CF case, travelling-wave solutions were calculated. These solutions are characterized by thickened
ridges in the vicinity of the contact line, and relatively flat profiles upstream, near the flow origin. The effect
of T and B on these solutions was investigated. Our results indicate that decreasing T and B gives rise to
larger (smaller) wall (film) deformations. In the CV case, similar observations were made regarding the
effect of T and B on the magnitude of film and wall deformations. Although travelling waves do not exist
within this configuration, self-similar scalings were determined for the film thickness and wall deflection.
These scalings were found to be similar to those associated with flow down a rigid incline.

The results of the linear stability analysis revealed that the flow, which is unstable to transverse pertur-
bations even in the rigid-wall case, is further destabilized via a decrease in T . Our results also demonstrate
the existence of an intermediate range of B values over which instability is maximized. By using a sim-
plified ‘energy’ analysis, the destabilizing effect associated with wall flexibility was traced to the coupling
which arises between the liquid film and underlying wall through the normal stresses. These stresses within
the framework of lubrication theory comprise capillary pressures, which drive flow in the streamwise and
transverse directions. Future work should examine the dynamics and stability of the flow in the nonlinear
regime.
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